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The Heartbleed Bug

The Heartbleed Bug is a serious vulnerability in the popular OpenSSL cryptographic software library. This weakness
allows stealing the information protected, under normal conditions, by the SSL/TLS encryption used to secure the
Internet. SSL/TLS provides communication security and privacy over the Internet for applications such as web, email,
instant messaging (IM) and some virtual private networks (VPNs).

The Heartbleed bug allows anyone on the Internet to read the memory of the systems protected by the vulnerable
versions of the OpenSSL software. This compromises the secret keys used to identify the service providers and to
encrypt the traffic, the names and passwords of the users and the actual content. This allows attackers to eavesdrop on
communications, steal data directly from the services and users and to impersonate services and users.

What leaks in practice? How to stop the leak?

We have tested some of our own services from attacker's perspective. We attacked As long as the vulnerable version of OpenSSL is in use it can be abused. Fixed
ourselves from outside, without leaving a trace. Without using any privileged information OpenSSL has been released and now it has to be deployed. Operating system vendors
or credentials we were able steal from ourselves the secret keys used for our X.509 and distribution, appliance vendors, independent software vendors have to adopt the fix
certificates, user names and passwords, instant messages, emails and business critical and notify their users. Service providers and users have to install the fix as it becomes
documents and communication. available for the operating systems, networked appliances and software they use.

Q&A
What is the CVE-2014-01607

CVE-2014-0160 is the official reference to this bug. CVE (Common Vulnerabilities and Exposures) is the Standard for Information Security Vulnerability Names maintained by MITRE.
Due to co-incident discovery a duplicate CVE, CVE-2014-0346, which was assigned to us, should not be used, since others independently went public with the CVE-2014-0160
identifier.

Why it is called the Heartbleed Bug?

Bug is in the OpenSSL's implementation of the TLS/DTLS (transport layer security protocols) heartbeat extension (RFC6520). When it is exploited it leads to the leak of memory
contents from the server to the client and from the client to the server.
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An extended abstract of this article appears in the proceedings of CCS 2021, This is the full version and available in the IACR eprint archive.
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ABSTRACT

Roughly four decades ago, Taher ElGamal put forward what is
today one of the most widely known and best understood public key
encryption schemes. ElGamal encryption has been used in many
different contexts, chiefly among them by the OpenPGP standard.
Despite its simplicity, or perhaps because of it, in reality there is a
large degree of ambiguity on several key aspects of the cipher. Each
library in the OpenPGP ecosystem seems to have implemented a
slightly different “flavour” of ElGamal encryption. While —taken in
isolation- each implementation may be secure, we reveal that in the
interoperable world of OpenPGP, unforeseen cross-configuration
attacks become possible. Concretely, we propose different such
attacks and show their practical efficacy by recovering plaintexts
and even secret keys.

CCS CONCEPTS

» Security and privacy — Public key encryption.
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1 INTRODUCTION

The ElGamal cryptosystem [14] is one of the oldest and best-known
public key encryption schemes. In the 80's and 90’s it earned wide
adoption for being simultaneously efficient and patent-free. Its most
prominent use is arguably as part of OpenPGP [12], a standard
aimed to promote consumable, interoperable email security, where
it has been the default and most popular encryption option for
decades [30]. While the change in patent status of RSA encryption
slightly reduced its popularity, at the time of writing, still at least 1
in 6 registered OpenPGP keys have an ElGamal subkey [3], with
about a 1,000 new registrations per year.

The ElGamal scheme builds on elegant mathematical structures
and can be defined very compactly. This simplicity, together with
the opportunity to mature for roughly four decades now, suggests
that a crisp specification with clear parameter choices, rules, and
algorithms would be present in international standards, in partic-
ular in OpenPGP. Surprisingly, this turns out not to be the case:
our research reveals that OpenPGP’s understanding of ElGamal
encryption is open to interpretation, with several choices subject
to the discretion of the implementer.

In this article we consider cross-configuration attacks on OpenPGP.

Such attacks emerge when different interpretations (‘configura-
tions") of the same standard interact insecurely with each other. To-
wards identifying such conditions for ElGamal encryption, we need
to first understand the universe of OpenPGP interpretations that
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are used in practice. We approach this challenge from various an-
gles: we carefully study RFC4880 [12] which defines OpenPGP, we
inspect the source code of three relevant OpenPGP-implementing
software libraries (the Go standard library, Crypto++, and gerypt),
and we conduct a large-scale examination of millions of keys regis-
tered on OpenPGP key servers.

Our results reveal an insecure posture. For instance, we develop
and prototype a plaintext recovery attack that can be mounted
on ciphertexts produced by the ubiquitous GNU Privacy Guard
(and other implementations, e.g. Crypto++) against keys generated
following the original ElGamal specification [14]. The attack is
effective against 2048 bit keys, which are considered secure at the
time of writing. Our OpenPGP key server analysis reveals that more
than 2,000 OpenPGP users are currently exposed.’ We further illus-
trate how cross-configuration attacks can be combined with known
side-channel exploitation techniques like FLUSH+RELOAD [38] or
PRIME+PROBE [33]. One of our targets is the ElGamal implementa-
tion of gerypt, the cryptographic library used by the GNU Privacy
Guard. Interestingly, gcrypt has already been fixed twice after sem-
inal work [21, 38] on side-channel attacks identified weaknesses.
Concretely, by conducting an end-to-end attack we show that if a
2048 bit E1Gamal key generated by Crypto++ is used by gcrypt to
decrypt a ciphertext, then an attacker that is OS- or VM-colocated
with the decrypter can fully recover the decryption key.

Given that interoperability is the explicit and almost exclusive
goal of any standardization effort, and commonplace in the OpenPGP
world, we conclude that our attack conditions are as realistic as
the attack results awakening. Our research is timely since a new
version of the OpenPGP standard is currently being discussed [18];
we hope that our findings will influence that discussion.

This manuscript is organised as follows: In Section 2 we survey
(a) the meaningful options available when implementing ElGa-
mal encryption, (b) the options adopted by the Go, Crypto++, and
gerypt libraries, and (c) the options picked by over 800,000 users
in practice (as far as reflected on key server databases); we also
report on further interesting findings from our key server crawl. In
Section 3 we recall various standard algorithms for solving discrete
logarithms. In Section 4 we describe “vanilla” cross-configuration
altacks, and in Section 5 we describe those combined with side-
channel attacks. In Section 6 we conduct end-to-end exploits and
describe how we bring in the required side-channel information.
We conclude in Section 7.

1.1 Related Work

Since ElGamal encryption was first proposed [14], research efforts
were both steered towards formally confirming its security (e.g. via
reductions to the DDH problem [34]) and to shed light on its insecu-
rities (e.g. when used in its textbook form [10]). CVE-2018-6829 [2]

'We found that at most a small fraction of ElGamal keys is formed according to the
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Abstract

ARM-based Android smartphones rely on the TrustZone
hardware support for a Trusted Execution Environment (TEE)
to implement security-sensitive functions. The TEE runs a
separate, isolated, TrustZone Operating System (TZOS), in
parallel to Android. The implementation of the cryptographic
functions within the TZOS is left to the device vendors, who
create proprietary undocumented designs.

In this work, we expose the cryptographic design and imple-
mentation of Android’s Hardware-Backed Keystore in Sam-
sung’s Galaxy S8, 59, S10, 520, and S21 flagship devices.
We reversed-engineered and provide a detailed description of
the cryptographic design and code structure, and we unveil
severe design flaws. We present an IV reuse attack on AES-
GCM that allows an attacker to extract hardware-protected
key material, and a downgrade attack that makes even the
latest Samsung devices vulnerable to the IV reuse attack. We
demonstrate working key extraction attacks on the latest de-
vices. We also show the implications of our attacks on two
higher-level cryptographic protocols between the TrustZone
and a remote server: we demonstrate a working FIDO2 We-
bAuthn login bypass and a compromise of Google’s Secure
Key Import.

We discuss multiple flaws in the design flow of TrustZone
based protocols. Although our specific attacks only apply to
the ~100 million devices made by Samsung, it raises the
much more general requirement for open and proven stan-
dards for critical cryptographic and security designs.

1 Introduction

Beyond their usage in many and various daily activities, smart-
phones are increasingly used for many security-critical tasks,
such as the protection of sensitive data (messages, images,
files), cryptographic key management [26], FIDO2 web au-
thentication [69], Digital Rights Management [68] (DRM),

Simultaneously, smartphones are becoming more and more
complex and present an increasingly larger attack surface. The
result is that they have become a major target for malware and
malicious attackers. There have been many public exploits
that allow an attacker to escalate privileges in the Android OS,
gaining execution as root or even as the OS kernel [9, 14, 20,
21,43]. Ideally, such attacks should not be able to compromise
the devices’ security-critical tasks.

Trusted Execution Environments (TEEs) are largely used
in modern mobile devices to provide an isolated environment
for execution of Trusted Applications (TAs) that can securely
perform security-critical tasks. They have a relatively small
codebase and limited APIs.

In contrast, the Rich Execution Environments (REEs), such
as Android OS, cannot be fully audited and trusted (due to
their complexity). An isolated TEE can be used alongside the
REE to implement security-sensitive functions. This makes
it harder for an attacker to compromise these functions, as
the attack surface is significantly reduced and is limited to
communication with the TEE.

In other words, the goal of the TEE is to withstand attacks
from a fully compromised REE, including by privileged ad-
versaries with kernel or root capabilities.

ARM is the most widely used processor in the mobile
and embedded markets [50], and it provides TEE hardware
support with ARM TrustZone [3, 8]. TrustZone separates the
device into two execution environments:

1. A non-secure REE where the “Normal World” operating
system runs.

2. A secure TEE where the “Secure World” operating sys-
tem runs,

The REE and TEE use separate resources (e.g., memory, pe-
ripherals), and the hardware enforces the protection of Secure
World.

In most mobile devices, the Android OS runs the non-
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almost a gigabyte’s worth of sensitive data, including their own personal
documents as well as passwords and cryptographic keys to various AWS

environments.

While these kinds of leaks are not unusual or special, what is noteworthy here is

Finnish security researcher Juho Nurminen is a bit of a retweet celebrity right now, for all the wrong how quickly the employee’s credentials were recovered by a third party, who—to

reasons.

000000

the emplovee’s good fortune, perhaps—immediately warned the company.

Not his wrong reasons, but the wrong reasons of Adobe's Product Security Incident Response Team On the morning of January 13, an AWS employee, identified as a DevOps Cloud

(PSIRT). Engineer on LinkedIn, committed nearly a gigabyte’s worth of data to a
personal GitHub repository bearing their own name. Roughly 30 minutes later,

To explain. Greg Pollock, vice president of product at UpGuard, a California-based security




2
000

GitGuardian BLOG  VISITWEBSITE  CONTACT SALES  DEVSECOPS GLOSSARY O M o v

BEST PRACTICES

Exposing secrets on GitHub:
What to do after leaking
credentials and API keys

If you have discovered that you have just exposed a sensitive file or

secrets to a public git repository, there are some very important steps
to follow.

% MACKENZIE JACKSON




How to increase the Resilience
of Cryptographic Keys?




Resilience after Key Leakage: Forward Security

- Key leakage: severe 1ssue for key establishment — all data immediately in danger

- Mitigation: forward security — old data still safe

- Efficient In Interactive key-exchange protocols and mandatory in TLS 1.3 with 1-RTT
- 99% of Internet sites surveyed by Qualys SSL Labs support It

- Highly recognized by industry: Google, Apple, Meta, Microsoft, Cloudflare, ...

However: much harder in non-interactive settings!



Non-Interactive Forward Security

« Rec

- Par

uirements: long-term fixed public key, (minimum to) no state between entities

icularly the case in modern distributed settings with many decentralized entities

- Deployed by, e.g., Dfinity in their non-interactive distributed key generation and key
resharing protocol

How to even achieve this?



Non-Interactive Forward Security
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Epoch-based synchronization [Canetti-Halevi-Katz 2003], compact parameter sizes (independent on # of epochs), coarse-grained
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Fine-Grained Forward Security: Puncturable Encryption

* Problem: loose synchronization required for practicality
- However: no forward-security guarantees for data within epochs
- Solution: Puncturable Encryption (Green & Miers 2015)

- Result: fine-grained forward-security guarantees for all data non-interactively

11



Puncturable Encryption
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Puncturable Encryption

- Common encryption scheme + puncture: (pR, (SR, e)) < KeyGen, Enc, Dec, Punc
- Encryption: returns (C, ty) < Enc(pR, t;, M)
+ Puncturing: returns (SR, t;) < Punc((sk,¢e), t;)

- Properties: (sk,t;) no longer useful to decrypt ciphertexts associated to t; (such as
(C,t1)), but still all others with t,, . ..

- Distinguishing feature: repeated puncturing of secret keys (add more tags to the
secret key, exclude more ciphertexts from being decryptable)

13



Asynchronous messaging
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Appl. I: 0-RTT Key Exchange with Forward Security and Replay Protection

- Goal: send cryptographically protected payload non-interactively (i.e., in 0-RTT) with
forward security and replay protection

- Incentive: reduce network communication costs

Problem: conventional key establishing modes (e.g., TLS)
need at least one round trip (1-RTT) to achieve forward security

15



Key Establishment with TLS 1.3
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Forward-security guarantees, but 1-RTT before first payload message. Is this necessary?
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Key Establishment with TLS 1.3 and Early Data

Client Hello + % (early data) 3
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0-RTT, but no forward-security guarantees for early data.
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0-RTT Key Exchange using Puncturable Encryption

: pk, t. — —
) \_ )
Client Server
pk sk, € XE sk, . &l ...

Forward security and replay protection in 0-RTT [GHLJ17, DGJS=21],

evaluation for QUIC [DDG+20], integration in OpenSSL [Ram21], using time-based puncturable encryption
18



Appl. Il: Forward-Secure Content Distribution Networks

+ Goal: Content Distribution Networks distribute TLS secret keys closer to customers
- Incentive: low-latency content distribution

- Solution: restrict access to secret keys — e.g., Cloudflare’'s Geo Key Manager allows
access for certain locations while restricting access for co-locations

Problem: conventional CDNs do not ensure forward security,
.e., customer keys may leak once a (co-)location key leaks

19



Forward-Secure CDNs using Puncturable Encryption
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Allow-/deny-list (ALDL) encryption adds forward security via (enhanced) Puncturable Encryption [DRS"21] 20



Takeaways

+ High demand In increasing resilience of secret keys

- Puncturable Encryption offers a simple solution on the cryptographic level,
particularly for modern distributed and non-interactive scenarios

- Several applications and growing research interest: 0-
and replay protection, forward-secure CDNs, Searchab

Backup, Tor, Updatab

e Encryption, ...

RTT KE with forwa

e Encryption, mo

rd security

nile Cloud
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