Puncturable Encryption — A Fine-Grained Approach
to Forward Security and More

Christoph Striecks
joint work with Sebastian Ramacher & Daniel Slamanig

April 15, 2022

AIT Austrian Institute of Technology

Security and Trust
of Cryptographic Keys

The Heartbleed Bug

The Heartbleed Bug is a serious vulnerability in the popular OpenSSL cryptographic software library. This weakness
allows stealing the information protected, under normal conditions, by the SSL/TLS encryption used to secure the
Internet. SSL/TLS provides communication security and privacy over the Internet for applications such as web, email,
instant messaging (IM) and some virtual private networks (VPNs).

The Heartbleed bug allows anyone on the Internet to read the memory of the systems protected by the vulnerable
versions of the OpenSSL software. This compromises the secret keys used to identify the service providers and to
encrypt the traffic, the names and passwords of the users and the actual content. This allows attackers to eavesdrop on
communications, steal data directly from the services and users and to impersonate services and users.

What leaks in practice? How to stop the leak?

We have tested some of our own services from attacker's perspective. We attacked As long as the vulnerable version of OpenSSL is in use it can be abused. Fixed
ourselves from outside, without leaving a trace. Without using any privileged information OpenSSL has been released and now it has to be deployed. Operating system vendors
or credentials we were able steal from ourselves the secret keys used for our X.509 and distribution, appliance vendors, independent software vendors have to adopt the fix
certificates, user names and passwords, instant messages, emails and business critical and notify their users. Service providers and users have to install the fix as it becomes
documents and communication. available for the operating systems, networked appliances and software they use.

Q&A
What is the CVE-2014-01607

CVE-2014-0160 is the official reference to this bug. CVE (Common Vulnerabilities and Exposures) is the Standard for Information Security Vulnerability Names maintained by MITRE.
Due to co-incident discovery a duplicate CVE, CVE-2014-0346, which was assigned to us, should not be used, since others independently went public with the CVE-2014-0160
identifier.

Why it is called the Heartbleed Bug?

Bug is in the OpenSSL's implementation of the TLS/DTLS (transport layer security protocols) heartbeat extension (RFC6520). When it is exploited it leads to the leak of memory
contents from the server to the client and from the client to the server.

[s1ala]

An extended abstract of this article appears in the proceedings of CCS 2021, This is the full version and available in the IACR eprint archive.

On the (in)security of EIGamal in OpenPGP

Luca De Feo"
IBM Research Europe — Zurich
Riischlikon, Switzerland

ABSTRACT

Roughly four decades ago, Taher ElGamal put forward what is
today one of the most widely known and best understood public key
encryption schemes. ElGamal encryption has been used in many
different contexts, chiefly among them by the OpenPGP standard.
Despite its simplicity, or perhaps because of it, in reality there is a
large degree of ambiguity on several key aspects of the cipher. Each
library in the OpenPGP ecosystem seems to have implemented a
slightly different “flavour” of ElGamal encryption. While —taken in
isolation- each implementation may be secure, we reveal that in the
interoperable world of OpenPGP, unforeseen cross-configuration
attacks become possible. Concretely, we propose different such
attacks and show their practical efficacy by recovering plaintexts
and even secret keys.

CCS CONCEPTS

» Security and privacy — Public key encryption.

KEYWORDS

OpenPGP, ElGamal encryption, side-channel attacks, key-recovery
attacks, modular exponentiation

1 INTRODUCTION

The ElGamal cryptosystem [14] is one of the oldest and best-known
public key encryption schemes. In the 80's and 90’s it earned wide
adoption for being simultaneously efficient and patent-free. Its most
prominent use is arguably as part of OpenPGP [12], a standard
aimed to promote consumable, interoperable email security, where
it has been the default and most popular encryption option for
decades [30]. While the change in patent status of RSA encryption
slightly reduced its popularity, at the time of writing, still at least 1
in 6 registered OpenPGP keys have an ElGamal subkey [3], with
about a 1,000 new registrations per year.

The ElGamal scheme builds on elegant mathematical structures
and can be defined very compactly. This simplicity, together with
the opportunity to mature for roughly four decades now, suggests
that a crisp specification with clear parameter choices, rules, and
algorithms would be present in international standards, in partic-
ular in OpenPGP. Surprisingly, this turns out not to be the case:
our research reveals that OpenPGP’s understanding of ElGamal
encryption is open to interpretation, with several choices subject
to the discretion of the implementer.

In this article we consider cross-configuration attacks on OpenPGP.

Such attacks emerge when different interpretations (‘configura-
tions") of the same standard interact insecurely with each other. To-
wards identifying such conditions for ElGamal encryption, we need
to first understand the universe of OpenPGP interpretations that

Bertram Poettering’
IBM Research Europe - Zurich
Riischlikon, Switzerland

Alessandro Sorniotti*
IBM Research Europe - Zurich
Riischlikon, Switzerland

are used in practice. We approach this challenge from various an-
gles: we carefully study RFC4880 [12] which defines OpenPGP, we
inspect the source code of three relevant OpenPGP-implementing
software libraries (the Go standard library, Crypto++, and gerypt),
and we conduct a large-scale examination of millions of keys regis-
tered on OpenPGP key servers.

Our results reveal an insecure posture. For instance, we develop
and prototype a plaintext recovery attack that can be mounted
on ciphertexts produced by the ubiquitous GNU Privacy Guard
(and other implementations, e.g. Crypto++) against keys generated
following the original ElGamal specification [14]. The attack is
effective against 2048 bit keys, which are considered secure at the
time of writing. Our OpenPGP key server analysis reveals that more
than 2,000 OpenPGP users are currently exposed.’ We further illus-
trate how cross-configuration attacks can be combined with known
side-channel exploitation techniques like FLUSH+RELOAD [38] or
PRIME+PROBE [33]. One of our targets is the ElGamal implementa-
tion of gerypt, the cryptographic library used by the GNU Privacy
Guard. Interestingly, gcrypt has already been fixed twice after sem-
inal work [21, 38] on side-channel attacks identified weaknesses.
Concretely, by conducting an end-to-end attack we show that if a
2048 bit E1Gamal key generated by Crypto++ is used by gcrypt to
decrypt a ciphertext, then an attacker that is OS- or VM-colocated
with the decrypter can fully recover the decryption key.

Given that interoperability is the explicit and almost exclusive
goal of any standardization effort, and commonplace in the OpenPGP
world, we conclude that our attack conditions are as realistic as
the attack results awakening. Our research is timely since a new
version of the OpenPGP standard is currently being discussed [18];
we hope that our findings will influence that discussion.

This manuscript is organised as follows: In Section 2 we survey
(a) the meaningful options available when implementing ElGa-
mal encryption, (b) the options adopted by the Go, Crypto++, and
gerypt libraries, and (c) the options picked by over 800,000 users
in practice (as far as reflected on key server databases); we also
report on further interesting findings from our key server crawl. In
Section 3 we recall various standard algorithms for solving discrete
logarithms. In Section 4 we describe “vanilla” cross-configuration
altacks, and in Section 5 we describe those combined with side-
channel attacks. In Section 6 we conduct end-to-end exploits and
describe how we bring in the required side-channel information.
We conclude in Section 7.

1.1 Related Work

Since ElGamal encryption was first proposed [14], research efforts
were both steered towards formally confirming its security (e.g. via
reductions to the DDH problem [34]) and to shed light on its insecu-
rities (e.g. when used in its textbook form [10]). CVE-2018-6829 [2]

'We found that at most a small fraction of ElGamal keys is formed according to the
P S WPy - PN PO o & I) PP PR PO NP URVEY o T) o QR RRPRRP e [[WP - ST

o000

Trust Dies in Darkness:
Shedding Light on Samsung’s TrustZone Keymaster Design

Alon Shakevsky
shakevsky @ mail.tau.ac.il

Eyal Ronen
eyal.ronen@cs.tau.ac.il

Avishai Wool
yash@eng.tau.ac.il

Tel-Aviv University

Abstract

ARM-based Android smartphones rely on the TrustZone
hardware support for a Trusted Execution Environment (TEE)
to implement security-sensitive functions. The TEE runs a
separate, isolated, TrustZone Operating System (TZOS), in
parallel to Android. The implementation of the cryptographic
functions within the TZOS is left to the device vendors, who
create proprietary undocumented designs.

In this work, we expose the cryptographic design and imple-
mentation of Android’s Hardware-Backed Keystore in Sam-
sung’s Galaxy S8, 59, S10, 520, and S21 flagship devices.
We reversed-engineered and provide a detailed description of
the cryptographic design and code structure, and we unveil
severe design flaws. We present an IV reuse attack on AES-
GCM that allows an attacker to extract hardware-protected
key material, and a downgrade attack that makes even the
latest Samsung devices vulnerable to the IV reuse attack. We
demonstrate working key extraction attacks on the latest de-
vices. We also show the implications of our attacks on two
higher-level cryptographic protocols between the TrustZone
and a remote server: we demonstrate a working FIDO2 We-
bAuthn login bypass and a compromise of Google’s Secure
Key Import.

We discuss multiple flaws in the design flow of TrustZone
based protocols. Although our specific attacks only apply to
the ~100 million devices made by Samsung, it raises the
much more general requirement for open and proven stan-
dards for critical cryptographic and security designs.

1 Introduction

Beyond their usage in many and various daily activities, smart-
phones are increasingly used for many security-critical tasks,
such as the protection of sensitive data (messages, images,
files), cryptographic key management [26], FIDO2 web au-
thentication [69], Digital Rights Management [68] (DRM),

Simultaneously, smartphones are becoming more and more
complex and present an increasingly larger attack surface. The
result is that they have become a major target for malware and
malicious attackers. There have been many public exploits
that allow an attacker to escalate privileges in the Android OS,
gaining execution as root or even as the OS kernel [9, 14, 20,
21,43]. Ideally, such attacks should not be able to compromise
the devices’ security-critical tasks.

Trusted Execution Environments (TEEs) are largely used
in modern mobile devices to provide an isolated environment
for execution of Trusted Applications (TAs) that can securely
perform security-critical tasks. They have a relatively small
codebase and limited APIs.

In contrast, the Rich Execution Environments (REEs), such
as Android OS, cannot be fully audited and trusted (due to
their complexity). An isolated TEE can be used alongside the
REE to implement security-sensitive functions. This makes
it harder for an attacker to compromise these functions, as
the attack surface is significantly reduced and is limited to
communication with the TEE.

In other words, the goal of the TEE is to withstand attacks
from a fully compromised REE, including by privileged ad-
versaries with kernel or root capabilities.

ARM is the most widely used processor in the mobile
and embedded markets [50], and it provides TEE hardware
support with ARM TrustZone [3, 8]. TrustZone separates the
device into two execution environments:

1. A non-secure REE where the “Normal World” operating
system runs.

2. A secure TEE where the “Secure World” operating sys-
tem runs,

The REE and TEE use separate resources (e.g., memory, pe-
ripherals), and the hardware enforces the protection of Secure
World.

In most mobile devices, the Android OS runs the non-

fooo [ooo
THEAV.CLUB DEADSPIN GIZMODO JALOPMIK JEZEBEL KOTAKU LIFEHACKER THEROOT THE TAKEOUT THE ONION THE INVENTORY

G ' z M o D 0 Tech. Science. Culture.

HOME LATEST TECH NEWS REVIEWS HOW TO SCIENCE EARTHER 109 EN ESPANOL

r}aked Security w SOPHOS PRODUCTS > FREETOOLS > O, FREE SOPHOS HOME >

Have you listened to our podcast? Listen now

Adobe security team posts public key
— together with private key

X Don't show me this again
PRIVACY AND SECURITY

Get the latest security news in your inbox.

[will ot make my PRIVATE Rey PUBLIC.
(will ot make my PRIVATE Rey PUBLIC.
(will ot make my PRIVATE Rey PUBLIC.
(will not make my PRIVATE Rey PUBLIC.
(will not make my PRIVATE Rey PUBLIC.
L will not make my PRIVATE key PUBLIC.
| will not make my PRIVATE Rey PUBLIC.
| will not make my PRIVATE key PUBLIC.
(will not make my PRIVATE key PUBLIC.
| will not make my PRIVATE key PUBLIC.

Amazon Engineer Leaked Private Encryption Keys.
Outside Analysts Discovered Them in Minutes

By Dell Cameran | 1/22/2012:24PM | Comments (16)

i ~————————————Featured Videos

GIZI>ODO

Mac Studio and
Studio Display
Review

Friday 3:15PM

hout a warrant ruled unc... Next: M PW nes, Apache bleeds a... o

by Paul Ducklin - - n

Photo: Getty
io9 Exclusive Star
An Amazon Web Services (AWS) engineer last week inadvertently made public Trek: Discovery
Season 4 Finale
Clip: "The Status" L
Wednesday 3:15PM " I Exclusive Clip From
Star Trek: Discovery's Season Finale

almost a gigabyte’s worth of sensitive data, including their own personal
documents as well as passwords and cryptographic keys to various AWS

environments.

While these kinds of leaks are not unusual or special, what is noteworthy here is

Finnish security researcher Juho Nurminen is a bit of a retweet celebrity right now, for all the wrong how quickly the employee’s credentials were recovered by a third party, who—to

reasons.

000000

the emplovee’s good fortune, perhaps—immediately warned the company.

Not his wrong reasons, but the wrong reasons of Adobe's Product Security Incident Response Team On the morning of January 13, an AWS employee, identified as a DevOps Cloud

(PSIRT). Engineer on LinkedIn, committed nearly a gigabyte’s worth of data to a
personal GitHub repository bearing their own name. Roughly 30 minutes later,

To explain. Greg Pollock, vice president of product at UpGuard, a California-based security

2
000

GitGuardian BLOG VISITWEBSITE CONTACT SALES DEVSECOPS GLOSSARY O M o v

BEST PRACTICES

Exposing secrets on GitHub:
What to do after leaking
credentials and API keys

If you have discovered that you have just exposed a sensitive file or

secrets to a public git repository, there are some very important steps
to follow.

% MACKENZIE JACKSON

How to increase the Resilience
of Cryptographic Keys?

Resilience after Key Leakage: Forward Security

- Key leakage: severe 1ssue for key establishment — all data immediately in danger

- Mitigation: forward security — old data still safe

- Efficient In Interactive key-exchange protocols and mandatory in TLS 1.3 with 1-RTT
- 99% of Internet sites surveyed by Qualys SSL Labs support It

- Highly recognized by industry: Google, Apple, Meta, Microsoft, Cloudflare, ...

However: much harder in non-interactive settings!

Non-Interactive Forward Security

« Rec

- Par

uirements: long-term fixed public key, (minimum to) no state between entities

icularly the case in modern distributed settings with many decentralized entities

- Deployed by, e.g., Dfinity in their non-interactive distributed key generation and key
resharing protocol

How to even achieve this?

Non-Interactive Forward Security

O O

: g —
pk, 1 — —
9 ©)|
>
pk sk, 1 XB sk, 2 x; .

Epoch-based synchronization [Canetti-Halevi-Katz 2003], compact parameter sizes (independent on # of epochs), coarse-grained

10

Fine-Grained Forward Security: Puncturable Encryption

* Problem: loose synchronization required for practicality
- However: no forward-security guarantees for data within epochs
- Solution: Puncturable Encryption (Green & Miers 2015)

- Result: fine-grained forward-security guarantees for all data non-interactively

11

Puncturable Encryption

pk, t.
Q@ _

Tag-based approach (no synchronization required for sufficiently large tag space), fine-grained

© O O
O

O O O

sk, €

.

@

O O O
O O O

S

=
X

sk, t.

X

12

Puncturable Encryption

- Common encryption scheme + puncture: (pR, (SR, e)) < KeyGen, Enc, Dec, Punc
- Encryption: returns (C, ty) < Enc(pR, t;, M)
+ Puncturing: returns (SR, t;) < Punc((sk,¢e), t;)

- Properties: (sk,t;) no longer useful to decrypt ciphertexts associated to t; (such as
(C,t1)), but still all others with t,, . ..

- Distinguishing feature: repeated puncturing of secret keys (add more tags to the
secret key, exclude more ciphertexts from being decryptable)

13

Asynchronous messaging

2015

GM (S&P)

2016

Cloud Backup

Searchable Enc. Searchable Enc. Group Messaging Tor
PRE Cloud E-Mail
o ® o
L
® W S
® [_ ®
2017 2018 2019 2020
@
[® ® - - P
b ® "
@
®
A

GHJL (EC) | BMO (CCS) Der (RWC) | SYL* (CCS) PSK* (ESORICS)

Gin (RWC) DJS- (EC)

[a

DKLRS® (PKC) AG) (EC) | CRS: (AC) | BG (J

WCW+ (ESORICS)

DDG* (CANS)

5SS+ (PKQ) AG) (JC

C) DCM (0SDI) BDD* (AC)

LGM*(POPETSs)

®
)

Searchable Enc.

L

2021

]

DGJS* (JC)

Updatable Enc.

S (EP)

DRS® (FC) | SSL* (NDSS)

DSHR (ACISP)

14

Appl. I: 0-RTT Key Exchange with Forward Security and Replay Protection

- Goal: send cryptographically protected payload non-interactively (i.e., in 0-RTT) with
forward security and replay protection

- Incentive: reduce network communication costs

Problem: conventional key establishing modes (e.g., TLS)
need at least one round trip (1-RTT) to achieve forward security

15

Key Establishment with TLS 1.3

") 4)
Client Hello E— —
>] _
p Server Hello

1-RTT ﬁ'x OOO @ OOO

. (OOO OOO

) () O O O O

< X k
) (Payload) o)
Client Server

Forward-security guarantees, but 1-RTT before first payload message. Is this necessary?

16

Key Establishment with TLS 1.3 and Early Data

Client Hello + % (early data) 3

Server Hello + SOZ @ 203
) ﬁv 0 0 O O
<] (Payload) S i
Client Server
psk psk

0-RTT, but no forward-security guarantees for early data.

1/

0-RTT Key Exchange using Puncturable Encryption

: pk, t. — —
) _)
Client Server
pk sk, € XE sk, . &l ...

Forward security and replay protection in 0-RTT [GHLJ17, DGJS=21],

evaluation for QUIC [DDG+20], integration in OpenSSL [Ram21], using time-based puncturable encryption
18

Appl. Il: Forward-Secure Content Distribution Networks

+ Goal: Content Distribution Networks distribute TLS secret keys closer to customers
- Incentive: low-latency content distribution

- Solution: restrict access to secret keys — e.g., Cloudflare’'s Geo Key Manager allows
access for certain locations while restricting access for co-locations

Problem: conventional CDNs do not ensure forward security,
.e., customer keys may leak once a (co-)location key leaks

19

Forward-Secure CDNs using Puncturable Encryption

AL = {EU} sk, EU
DL = {London} L, o Stockholm

v

London

sk, EU
O Rome

Allow-/deny-list (ALDL) encryption adds forward security via (enhanced) Puncturable Encryption [DRS"21] 20

Takeaways

+ High demand In increasing resilience of secret keys

- Puncturable Encryption offers a simple solution on the cryptographic level,
particularly for modern distributed and non-interactive scenarios

- Several applications and growing research interest: 0-
and replay protection, forward-secure CDNs, Searchab

Backup, Tor, Updatab

e Encryption, ...

RTT KE with forwa

e Encryption, mo

rd security

nile Cloud

27

Thank you

Christoph Striecks
AIT Austrian Institute of Technology

More on the topic: profet.at/blog/pe

E D 49 FLF (R netidee £18 KRAKEN

ol COMP4DRONES Der Wissenschaftsfonds. SO

References

Matthew D. Green, lan Miers. Forward Secure
Asynchronous Messaging from Puncturable Encryp-
tion. IEEE Symposium on Security and Privacy 2015.

Felix Gunther, Britta Hale, Tibor Jager,
Sebastian Lauer. 0-RTT Key Exchange with Full
Forward Secrecy. EUROCRYPT 2017.

Felix Gunther. 0-RTT Key Exchange with Full
Forward Secrecy. RWC 2017.

Raphaél Bost, Brice Minaud, Olga Ohrimenko.
Forward and Backward Private Searchable Encryp-
tion from Constrained Cryptographic Primitives. CCS
2017.

David Derler, Tibor Jager, Daniel Slamanig,
Christoph Striecks. Bloom Filter Encryption and
Applications to Efficient Forward-Secret 0-RTT Key
Exchange. EUROCRYPT 2018.

David Derler. Bloom Filter Encryption and
Applications to Efficient Forward-Secret 0-RTT Key
Exchange. RWC 2018.

David Derler, Stephan Krenn, Thomas
Lorunser, Sebastian Ramacher, Daniel Slamanig,
Christoph Striecks. Revisiting Proxy Re-encryption:
Forward Secrecy, Improved Security, and Appli-
cations. Public Key Cryptography 2018.

Shifeng Sun, Xingliang Yuan, Joseph K. Liu,
Ron Steinfeld, Amin Sakzad, Viet Vo, Surya Nepal.
Practical Backward-Secure Searchable Encryption
from Symmetric Puncturable Encryption. CCS 2018.

Nimrod Aviram, Kai Gellert, Tibor Jager. Ses-
sion Resumption Protocols and Efficient Forward
Security for TLS 1.3 0-RTT. EUROCRYPT 2019.

Jianghong Wei, Xiaofeng Chen, Jianfeng
Wang, Xuexian Hu, Jianfeng Ma. Forward-Secure
Puncturable Identity-Based Encryption for Securing
Cloud Emails. ESORICS 2019.

Tran Viet Xuan Phuong, Willy Susilo, Jongkil
Kim, Guomin Yang, Dongxi Liu. Puncturable Proxy
Re-Encryption Supporting to Group Messaging Ser-
vice. ESORICS 2019.

Valerio Cini, Sebastian Ramacher, Daniel
Slamanig, Christoph Striecks. CCA-Secure (Punc-
turable) KEMs from Encryption with Non-Negligible
Decryption Errors. ASIACRYPT 2020.

Fynn Dallmeier, Jan Peter Drees, Kai Gellert,
Tobias Handirk, Tibor Jager, Jonas Klauke, Simon
Nachtigall, Timo Renzelmann, Rudi Wolf. Forward-
Secure 0-RTT Goes Live: Implementation and Per-
formance Analysis in QUIC. CANS 2020.

Colin Boyd, Kai Gellert. A Modern View on For-
ward Security. Comput. J. 2021.

Shi-Feng Sun, Amin Sakzad, Ron Steinfeld,
Joseph K. Liu, Dawu Gu. Public-Key Puncturable
Encryption: Modular and Compact Constructions.
Public Key Cryptography 2020.

Emma Dauterman, Henry Corrigan-Gibbs,
David Mazieres. SafetyPin: Encrypted Backups with
Human-Memorable Secrets. OSDI 2020.

Sebastian Lauer, Kai Gellert, Robert Merget,
Tobias Handirk, Jorg Schwenk. TORTT: Non-Interac-
tive Immediate Forward-Secret Single-Pass Circuit
Construction. PoPETS 2020.

Nimrod Aviram, Kai Gellert, Tibor Jager. Ses-
sion Resumption Protocols and Efficient Forward
Security for TLS 1.3 0-RTT. J. Cryptol. 2021.

Colin Boyd, Gareth T. Davies, Bor de Kock,
Kai Gellert, Tibor Jager, Lise Millerjord. Symmetric
Key Exchange with Full Forward Security and Ro-
bust Synchronization. ASIACRYPT 2021.

David Derler, Kai Gellert, Tibor Jager, Daniel
Slamanig, Christoph Striecks. Bloom Filter Encryp-
tion and Applications to Efficient Forward-Secret
0-RTT Key Exchange. J. Cryptol. 2021.

David Derler, Sebastian Ramacher, Daniel
Slamanig, Christoph Striecks. Fine-Grained Forward
Secrecy: Allow-List/Deny-List Encryption and Appli-
cations. Financial Cryptography 2021.

Priyanka Dutta, Willy Susilo, Dung Hoang
Duong, Partha Sarathi Roy. Puncturable Identity-
Based Encryption from Lattices. ACISP 2021.

Shi-Feng Sun, Ron Steinfeld, Shanggi Lali,
Xingliang Yuan, Amin Sakzad, Joseph K. Liu, Surya
Nepal, Dawu Gu. Practical Non-Interactive Searcha-
ble Encryption with Forward and Backward Privacy.
NDSS 2021.

Daniel Slamanig, Christoph Striecks. Puncture
'Em All: Stronger Updatable Encryption with No-
Directional Key Updates. IACR Cryptol. ePrint Arch.
2021.

Sebastian Ramacher. https://github.com/
ait-crypto/bfe-bf. 2021.

