

Quantum-Secure Hybrid Key Exchanges

"Do not put all your eggs in one basket"

Christoph Striecks and Ludovic Perret

AIT Austrian Institute of Technology and Sorbonne University

Webinar, 2nd October 2024

This project has received funding from the European Union's Horizon Europe research and innovation programme under the project "Quantum Security Networks Partnership" (QSNP, grant agreement No 101114043).

REGULATION (EU) 2023/588 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL

of 15 March 2023

establishing the Union Secure Connectivity Programme for the period 2023-2027

(16) In order to protect EUCI in a satisfactory secured manner, primary solutions to counter threats posed by quantum computing should be the combination of conventional solutions, post-quantum cryptography and possibly QKD in hybrid approaches. The Programme should therefore use such approaches, for the purpose of ensuring both state-of the-art cryptography and key distribution.

nttps://e	Official Journal of the European Union		
	2024/1101 12.4.2024		
	COMMISSION RECOMMENDATION (EU) 2024/1101		
	of 11 April 2024		
	on a Coordinated Implementation Roadmap for the transition to Post-Quantum Cryptography	.4.2024	

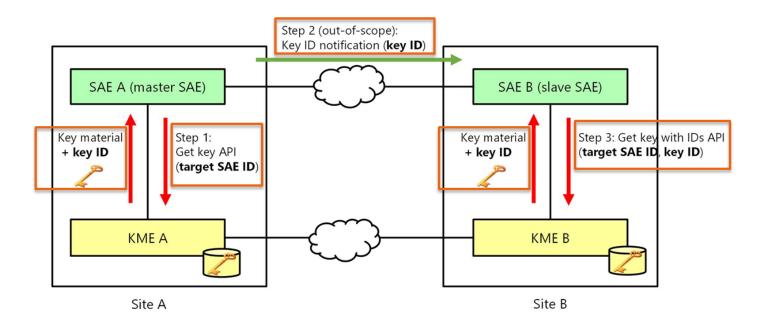
across the Union of Post-Quantum Cryptography technologies into existing public administration systems and critical infrastructures via hybrid schemes that may combine Post-Quantum Cryptography with existing cryptographic approaches or with Quantum Key Distribution.

https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=OJ:L_202401101

*Assuming that conventional/existing approaches mean: classical asymmetric and symmetric cryptography, but also pre-shared keys (PSKs)

Hybrid PQC/QKD/Conventional cryptographic framework ("Muckle approach")

International point of view, standardization efforts, recommendations for EuroQCI and beyond



Main features:

- Information-theoretically secure (ITS) key expansion
- Between two end-points
- Terrestrially or via space

Key establishment scheme. Source: ETSI QKD GS 014 v1.1.1

From Small to Large QKD Networks

- "QKD is [...] a solution for transforming a non-confidential authenticated channel into a confidential authenticated one."
- 2. Trusted nodes are currently required for long-range QKD

Long-Range QKD without Trusted Nodes is Not Possible with Current Technology

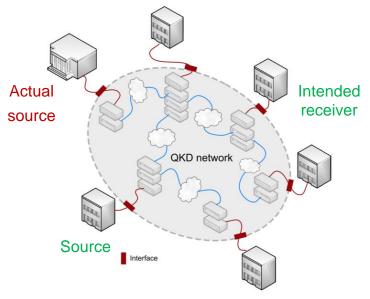
Authors:

Bruno Huttner, ID Quantique, Switzerland[†]; Romain Alléaume, Telecom Paris - Institut Polytechnique de Paris, France; Eleni Diamanti, Sorbonne University, CNRS - LIP6, France; Florian Fröwis, ID Quantique Europe, Austria; Philippe Grangier, Université Paris-Saclay, IOGS, CNRS, France; Hannes Hübel, Austrian Institute of Technology, Austria; Vicente Martin, Center for Computational Simulation / ETSIInf. Universidad Politécnica de Madrid, Spain; Andreas Poppe, Austrian Institute of Technology, Austria; Joshua A. Slater, QuTech - Delft University of Technology, The Netherlands ; Tim Spiller, University of York, UK; Wolfgang Tittel,

QuTech and Kavli Institute of Nanoscience, Delft Technical University, The Netherlands; Department of Applied Physics, University of Geneva, Switzerland; Schaffhausen Institute of Technology in Geneva, Switzerland; Benoit Tranier, ThalesAleniaSpace, France; Adrian Wonfor, University of Cambridge, UK; Hugo Zbinden, Department of Applied Physics, University of Geneva, Switzerland.

https://arxiv.org/pdf/2210.01636.pdf

SWEDISH ARMED FORCES

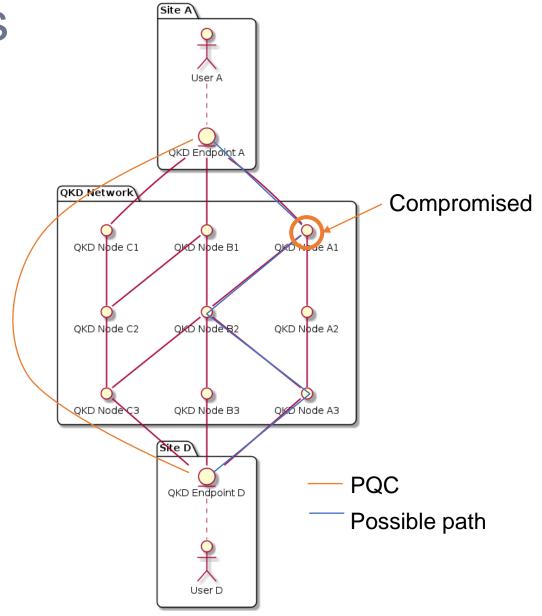

- "Authentication provides guarantees on the identities of the parties involved in the protocol execution." [GFW19]
- Problem: QKD does not solve source authenticity
- Solutions:
 - Pre-placed keys: need trusted couriers ٠ or key-distribution centers, ITS
 - Asymmetric Cryptography: using PQC ٠ via public key infrastructures (PKIs) in hybrid approaches, non-ITS

Authentication must go together with confidentiality.*

*PETRUS had a recent webinar series on network authentication methods

Technical limitations

- 1. Quantum key distribution is only a partial solution. QKD generates keying material a antian a la antikan that ann i da a a a Galantiality. Ou a la uina anatarial an i da a a
 - Reliance on classical cryptography for peer authentication he
 - if o As explained before, QKD requires a classical authenticated channel between the communicating parties.
 - There are several options for how to implement an authentication mechanism. One option is the use of prethe
 - shared keys with symmetric message authentication. To this end, a secret shared key must already be present
 - at both ends wishing to communicate with each other before running a QKD protocol. Consequently, secret
 - US keys must be distributed and then periodically renewed in a secure manner before being able to perform QKD. Another option is to use post-quantum signature schemes with an associated public-key infrastructure. httr However, in this case, the authentication relies on the security of the post-quantum scheme.



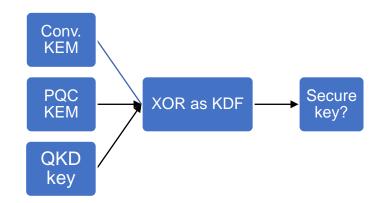
Hurdle 2: Trusted Nodes

- Problem:
 - Nodes on the QKD path learn secret key given also access to public traffic
 - End nodes **might not fully trust** intermediate nodes not in their trust domain
- One mitigation:
 - **Hybridization**, i.e., combine with PQC confidentiality mechanisms (via suitable protocols)

Hybrid (or, defense-in-depth) approaches mitigate both hurdles

Ad-Hoc Approaches

- Some works available to hybridize QKD & PQC
- Brauer et al.:
 - PQC+QKD in some variants via key derivation functions (KDFs)
- Garcia et al.:
 - PQC+QKD+Coventional in Transport Layer Security (TLS) 1.3, integrated in key schedule
- Some more related works available
- However: mostly ad-hoc constructions, i.e., without a proof of security (assessing formal security of hybridization hard to verify)
- Additionally: KDFs must be carefully designed (e.g., depending on the use cases):
 - Simple XOR *might not* guarantee active security [GKP18]
- For **KEM combiners**: start at BSI recommendations [BSI], ETSI TR 103 744 [ETS]


Article Linking QKD testbeds across Europe

Max Brauer¹, Rafael J. Vicente², Jaime S. Buruaga², Rubén B. Méndez², Ralf-Peter Braun¹, Marc Geitz¹, Piotr Rydlichkowsk³, Hans H. Brunner⁴, Fred Fung⁴, Momtchil Peev⁴, Antonio Pastor⁵, Diego Lopez⁵, Vicente Martin², and Juan P. Brito²

Quantum-Resistant TLS 1.3: A Hybrid Solution Combining Classical, Quantum and Post-Quantum Cryptography

Carlos Rubio Garcia Department of Electrical Engineering Eindhoven University of Technology Eindhoven, The Netherlands c.rubio.garcia@tue.nl Abraham Cano Aguilera Department of Electrical Engineering Eindhoven University of Technology Eindhoven, The Netherlands a.c.a.cano.aguilera@tue.nl Juan Jose Vegas Olmos Software Architecture NVIDIA Corporation Yokneam, Israel juanj@nvidia.com

Idelfonso Tafur Monroy Department of Electrical Engineering Eindhoven University of Technology Eindhoven, The Netherlands i.tafur.monroy@tue.nl Simon Rommel Department of Electrical Engineering Eindhoven University of Technology Eindhoven, The Netherlands s.rommel@tue.nl

[BSI] https://pkic.org/events/2023/pqc-conference-amsterdam-nl/pkic-pqcc_stephan-ehlen_bsi_post-quantum-policy-and-roadmap-of-the-bsi.pdf, slide 13 [ETS] https://www.etsi.org/deliver/etsi_tr/103500_103599/103570/01.01_60/tr_103570v010101p.pdf

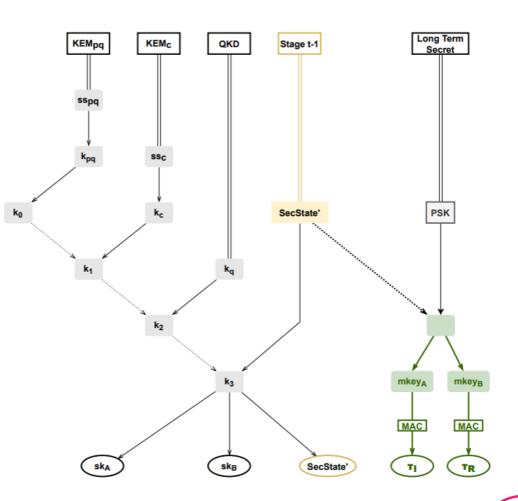
Hybrid Key Exchange

- Main features:
 - Security by design (with **security proof**)
 - Overall goal: derive an authenticated shared key from several cryptographic primitives such as PQC, QKD, and conventional crypto ("from primitives to protocols")
- Security goals:
 - Authenticity/integrity for both entities
 - Confidentiality of exchanged messages
 - Forward and post-compromise security (defacto standard in, e.g., TLS 1.3 today)
 - Rigorous proof of security

Many a Mickle Makes a Muckle: A Framework for Provably Quantum-Secure Hybrid Key Exchange

Benjamin Dowling¹, Torben Brandt Hansen², Kenneth G. Paterson¹

- Efficiency goals:
 - Authentication via PSKs and/or certificates (may be even passwords)
 - Modularity: allows any combination of primitives (if at least one component is secure)
 - Interesting choices: PQC authentication with QKD confidentiality or PQC/conv. for mobile use-cases
 - Crypto agility, i.e., being agnostic to instantiations of underlying primitives

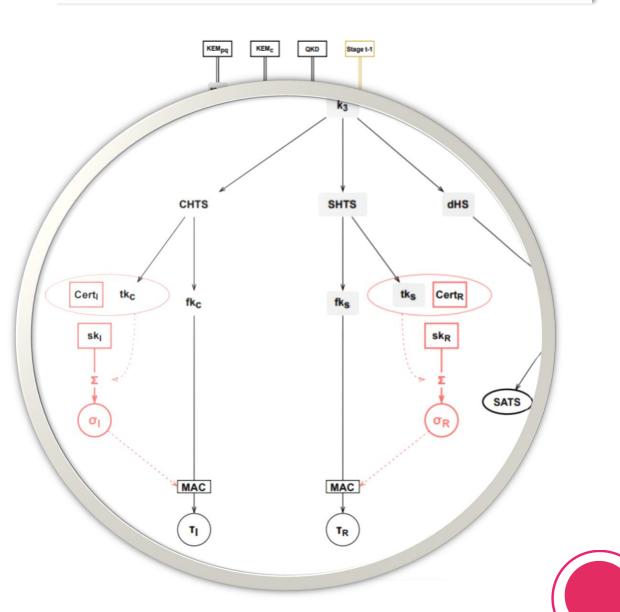


Instantiation: Muckle

- Modularly combining:
 - Keys from QKD layer, PQC key encapsulation mechanism (KEM), and optionally from conventional KEM
 - **PSK** for authentication
- Special benefits:
 - Proof of security for confidentiality, authentication, integrity, FS/PCS with potentially failing components
 - Meets EC and BSI* recommendations

But: Muckle uses PSKs for authentication which is inefficient for large networks Many a Mickle Makes a Muckle: A Framework for Provably Quantum-Secure Hybrid Key Exchange

Benjamin Dowling¹, Torben Brandt Hansen², Kenneth G. Paterson¹

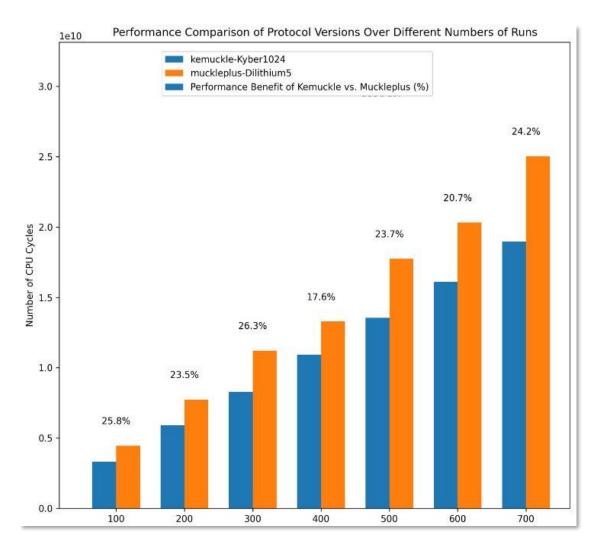


For Networks: Muckle+

Muckle+: End-to-End Hybrid Authenticated Key Exchanges*

Sonja Bruckner
1**, Sebastian Ramacher²@, and Christoph Striecks²
 @

- Special features:
 - Motivation: "Muckle without PSKs but with PQC certificates for authentication"
 - Allows efficient end-to-end authentication
 in large-scale quantum-safe networks
- Benefits:
 - Proof of security for confidentiality, authentication, integrity, FS/PCS with potentially failing components
 - Meets EC and BSI recommendations as Muckle
 - First proof of concept in a real QKD network



More Efficient: Muckle#

- AIT and Sorbonne joint work*, in preparation
- Special features:
 - "Practical optimization of Muckle+": swaps the use of PQ signatures with PQ KEMs for authentication
 - Inspired by recent work improving the TLS 1.3 protocol ("KEMTLS")

$(c_I, ss_I) \gets KEM_s.Enc(pk_R)$		
	$\stackrel{\boldsymbol{m_4}:\ \{c_I\}_{IHTS}}{\longrightarrow}$	$ss_I \leftarrow KEM_s.Dec(sk_R, c_I)$
	$AHS \leftarrow \mathcal{F}(dHS, \ell_9 \ ss_I)$	

- Benefits:
 - **Faster protocol** runs due to efficiency deficiencies in PQ signatures currently available (e.g., via the NIST standards)
 - Up to ~26% runtime benefit on Python prototype compared to Muckle+

Conclusion and Recommendations (of Part 1)

- Hybrid Authenticated Key Exchange (HAKE) protocols combine PQC, QKD, and conventional cryptographic primitives
- Technical recommendations:
 - Cryptographic hybrid protocols should have a rigorous proof of security (with state-of-the-art security guarantees such as forward & post-compromise security)
 - Hybrid protocols should be crypto-agile (agnostic to actual primitive implementation; secure combination of used primitives should be allowed)

